PHYSICAL REVIEW E, VOLUME 64, 016601

Breakdown of a conservation law in incommensurate systems
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We show that invariance properties of the Lagrangian of an incommensurate system, as described by the
Frenkel-Kontorova model, imply the existence of a generalized angular momentum that is an integral of
motion if the system remains floating. The behavior of this quantity can therefore monitor the character of the
system as floatingwhen it is conservedor locked (when it is noj. We find that, during the dynamics, the
nonlinear couplings of our model cause parametric phonon excitations that lead to the appearance of Umklapp
terms and to a sudden deviation of the generalized momentum from a constant value, signaling a dynamical
transition from a floating to a pinned state. We point out that this transition is related but does not coincide with
the onset of sliding friction, which can take place when the system is still floating.
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[. INTRODUCTION shift in this state. We show that this invariance is equivalent

to the absence of Umklapp terms. By means of numerical

Measuring friction at an atomic level has recently becomesimulations we show that the temporal behavior of the GAM
experimentally possiblEL]. Many studies of the dynamics of 1S @ powerful probe both of thén)commensurability of the

appropriate nonlinear systems aiming at establishing th@round-state configuration and of the dynamical phase in
mechanisms giving rise to energy dissipation during the slig/Nich the system is during motion. Simulations where the

ing of a body onto a crystalline surface have appeared in thiicommensurate ground 'state is given an initial velqcity
literature[2—5]. The Frenkel-Kontorov&FK) model, which show that the GAM remains conserved up to a well-defined

describes a harmonic chain interacting with a rigid periodiciMe Where a sudden jump takes place. We have been able to

substrate, is particularly suitable to study the important cas&/até dth's cr:]hange of behaw;)rufrokrr conserved Ato non con-
of an incommensurat@C) lattice parameter ratio of the con- served to the appearance of Umklapp terms. An important

tacting surfaces. The present study focuses on the effects gpding' is that this floating.-pinned transition does not coin-
discommensuration on the dynamics. It should be kept i iIde with the onset of friction. It was recently suggested by

mind that a more realistic study of friction would require an ~°POV[8] that the appearance of Umklapp terms, i.e., the
extension to two dimensions. Coupling to the third dimen-conservation of quasimomentum !”Ste?d of momentum for
sion can be provided either by ad hocdamping term or by crystalline systems, is the mechanism via that friction occurs
coupling to an elastic mediuii6]. The ground-state proper- in incommensurate contacts. The present result shows that
ties of this model have been thoroughly stud(@. At a this is not the only mechanism. By monitoring the sy§tem via
critical valuel . of the coupling to the external potential, the the GAM we can show t_hat decay of the CM VEIO.C't.y may
ground state of the system displays a structural transitio ccur already in the floating phase. The onset of friction and

(Aubry transition from a floating to a pinned configuration. the appearance of Umklapp terms are both caused by nonlin-

Below this threshold, the center of mass of the static syste ar coupl!ngs and_re.sonant phonon excitatio_ns in thg system
t ut remain two distinct phenomena occurring at different

can be displaced on the substrate without energy costs.

Therefore, one might expect a frictionless regime also in gimes. . .

dynamic situation, and superlubricregime, where the chain I_n_Sec_. ll. we describe th? construction of the_ GAM _by

would slide indefinitely, has been predicted for this cdde deriving it fron_1 the La_g.ranglan for th? system in Fourier

In a previous papdi5], we have pointed out that the inherent space and define conditions under wh|9h it is con;erved. In

nonlinear coupling of the center of ma&M) motion to the Sec.. A, we prgsent results of .numerltl:al _S|mulat|ons that
onfirm the validity of our analytical derivation and under-

phonons leads instead to an irreversible decay of the Cl\f th ful f the GAM to discriminate bet
velocity. The essential mechanism for the transfer of kinetic '¢ N€ USEIUNESS of the 0 discriminate between

energy from the center of mass to the internal vibrations isgorr;m(asnsburate anﬁi roatmg-IC_and_plr;ned—lllclprhterl]ses,lr?_spec-

the parametric resonant excitation of phonons mediated b \r’f yt') ubsequently, Wedeﬁarrl](llne, In Sec. d ’h € reha lon-

ordinary resonances with phonons related to the modulatin p between pinning and Umklapp terms and show the pres-
nce of a well-defined transition time. In Sec. IV, we present

potential. . . . :
Here we show that this type of mechanism has anothefonclusions and perspectives of this work. In the Appendix,

important consequence, namely, it causes the appearance"fﬂ‘f’ provide the reader with an explicit proof that the GAM is

Umklapp terms, signalling a dynamical transition in the sys-an integral of motion in the absence of Umklapp terms.

tem from a floating to a pinned state. We have studied this
phenomenon by identifying a new quantity, which we call

generalized angular momentuW@AM), which is an integral

of motion only if the system is in a floating IC phase, reflect- In this section we will construct a generalized angular
ing the invariance of the Lagrangian of the model for a phasenomentum for the dynamical FK model, as described in Ref.

II. CONSTRUCTION OF A GENERALIZED
ANGULAR MOMENTUM
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[5]. We remind the reader that this model represents a chain 1 T T T
of N particles that interact with each other via a first- ~ 0% @ K=2q K=
neighbor harmonic potential and are subjected to an external, X
spatially periodic, potential of strength. The FK Hamil- E 4o |
tonian reads
2 -25
p, 1 N [2mu 10
H= D, ?n+§(un+l—un—l)2+ 5-sin mn , 0 50 100 150
n=1
(o K

where theu,, are the particle positions an, their momenta. o _ol ) ' ' '
The ratio between the modulation period of the external po- Z 10 7]
tentialm and| (the equilibrium distance between the atoms £y
of the chain for\ =0) is taken to be irrational, i.e., the sys- = 1015 =
tem is incommensurate. In our calculations, we take 1
andl= 7-=(\/§+ 1)/_2 (golden meahn In_ the numgrical implet 1025
mentation for a finite system o particles, we impose peri- 0 50 100 150

dic bound diti
odic boundary conditions (k)

FIG. 1. FK model foN=377, A=0.05.(a) Phonon amplitudes

This implies that we have to choose commensurate ap_s-r?]ua][.edt TOHEd as z?jfunction Ofl.th.fl W.a\ée.’ Vted(gl))rassin Eq'(S)'.
proximants for the equilibrium distan¢eBy expressing as aﬁel'(r:) rv(\e,?agglg]joace:o?dﬁ e)t(g 'é'q% '%J‘;ati‘ifir)]itearr:;?n:ﬁcg
the ratio of consecutive Fibonacci numbers, we obtain ap?>'c & ording r

. . . : precision, the exponential decay wiki"l is apparent only for the
proximants that satisfy the conditidN=Mx1 withMand & "o 0 qee
N integers. Let us introduce the modulation wave-vector '
=27l=2m7(M/N) and the position and momentum of the
CM of the chain of atoms:

UN+1:N|+U1. (2)

1 1 The Umklapp terms are present whenever this relation is
Q= N > u,, P= N > Pn- (3)  satisfied withs#0. It is clear that the occurrence of Um-
n . klapp depends on the modgg that are not negligible, and
on the choice of théextended or reducédBrillouin zone in
which k is represented. It is known that in the ground-state,
for a coupling\ well below the critical value\;, which for
this model assumes the value.=0.154 ..., the modes
K= X014 X1~ 2%+ \ COS QN+ 27, + 27Q). (4)  With wave-vectomq have an amplitude that scales Xlé.
noonl ol S " This numbern| is therefore a natural label to represent the
As noted in Ref[5], in the weak-coupling regime, it is use- modes; we defina(k,q) as the smallestin absolute value
ful to move to Fourier coordinateg=(1/N)S e "x, with ~ number, which satisfies
k=2K/N. The phonon dispersion of the chain for=0 is
denoted byw,=w(k)=2|sin(/2)|. The Lagrangian associ- k=n(k,q)q mod 2) (7)
ated with Eq.(1) in transformed space becomes

The equations of motion for the deviatiorRs=u,—nl—Q
from the equilibrium positions in the uncoupled chain are
then given by

For a finite system withN particles, wherek can be repre-
1. . 1 sented in the reduced Brillouin zone &s-K(2#/N), K
ﬁzN[; EXkX—k—Ewﬁka—k e (—1/2N,1/2N], this can be rewritten as
N 1S (2w z K=nM modN),ne (—1/2N,1/2N]. (8
2m 21 p=1 (M), Tk, In Fig. 1, we compare the phonon amplitudes for the ground
state of the FK model foN=377, A=0.05, plotted as a
m 4 function of the usual wave-vector lab¢l[panel(a)], as well
1 as reordered according to the lalme][panel(b)]. Note that,
—(=1)™e I2WQXkl. . .ka5k1+'_.+km’q)+ E(Q)Z} due ?o finite n_umengal precision, t'he spallng behavior is hid-
den in numerical noise after the first fifteen modes.
(5) The use of as a mode label makes apparent the fact that
there is no Umklapp term in the ground state of the FK
It is important to notice that since wave vectors are defineanodel in the modulated phase fari\.. In fact, an Um-
modulo 2, the Kronecker deltas in E@5) should be read klapp term would imply the presence of a nonvanishing
as term:

i2
X (€270 - X Sie vk
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Xn,qXnyq" " *Xn_qi N1t N+ -Np=sN with s#0. (9) P (
0.28 -
The joint amplitude of this term would be
Alnal+ - Inpl <\ [sIN (10) 029
which vanishes foN— . (@)
The absence of Umklapp terms is directly related to the
. ) S 0.28
existence of a free-floating phase, which is a well-known
invariance property of the FK model. In the present notation, 0.27
it amounts to the invariance of the Lagrangian for the trans- ' '
formation 0 400 800
Q—Q+qel2m, (11) Time
) FIG. 2. Behavior of the CM momentuffor (a) an incommen-
Xk_’xkelkd)- (12 surate configuration with N=144, 7=233/144, \=0.015,

o ) ) . Po=0.29; (b) a commensurate case witN=144, r=5/3, \
This invariance is related to the existence of a zero-=0.015, P,=0.29. Note the qualitative similarity in the behavior

frequency Goldstone mode in the system. This mode is alser p.
often called phason, and should not be confused with the

usual acoustic mode of periodic crystals. _ rate system. This confirms that, can be used as a tool to
Having found an invariance for the Lagrangian, we cangiscriminate unambiguously between commensurate and in-
look for the conjugate conserved momentum. We get commensurate structures.

Furthermore, our numerical simulations show a remark-

. : q. q . able fact. If we start the simulation with an incommensurate

p"’_%_ _'; NAXongXng ™ 5 Q=L+5-Q- (13 4 condition, p,, is indeed conserved, but only up to a
critical timet,, after which, it rapidly deviates from its ini-

The quantityp,, represents a generalized angular momentuniial conserved value. This is shown in Fig. 4, where we can
(GAM). It is important to realize that the invariance of the examine the behavior gf, andP in a weak-coupling, highly
Lagrangian only holds in a subspace of the full phase spad@écommensurate 7=610/377\=0.015) case. In order to
where Umklapp terms can be neglected as it is the case f@heck that the observed variation p§ only sets in after a

the floating(incommensuradeground state. In order to stress critical timet,, we have analyzed the behavior of the quan-

this point, a direct calculation qf, is given in the Appen- Uty In(p,—Co), Co being the value op,, att=0. Itis evi-

dix, showing that the GAMp,, is an integral of motion only ~dent from panel(c) of Fig. 4 that we can identify such a
if the Umklapp terms are not present. critical timet, where the GAM has a jump in value of vari-

This quantity is therefore a useful tool to discriminate OUS order of magnitude. Besides, this figure shows that, for
between commensurate and incommensurate structures, affdtc, Py IS conserved within our numerical accuracy, never
floating and locked states. In the next section we preserfixceeding variation larger than 19. _
numerical simulations that we carried out for various values The critical timet. obviously depends on the coupling
of the parameters of the model, showing hpy is a good ~ StrengthA <A, and on the initial velocityPo. We are cur-
indicator of the phase in which the system is under examitently investigating the dependentg,P,), which turns
nation.

aL

Py
IIl. NUMERICAL RESULTS 0.096750 .

A. Commensurate vs incommensurate, locked vs floating (b)

We have performed numerical simulations in order to 0.096550 -
study the behavior of the GAM, as defined by Ef3), in-
tegrating by a Runge-Kutta algorithm thé Eqgs. (4). We 0.110765 I T
assign to the particles of the chain as initial conditions mo- ot10768 | 1 @
mentap,= Py and positionsx,(t=0) corresponding to the ' | |

ground state. Figure 2 shows simulation results for the same
number of particle®N and potential strengtk, but for a low _
(7=5/3) and a high £=233/144) approximant to the golden Time

means, producing a commensurate structure and an approxi- FiG, 3. Behavior ofp,, for the parameters of the model as de-
mate incommensurate one. The qualitative behavior of thecribed in Fig. 2.(a) Incommensurate case: the GAM is constant
momentum of the center-of-magsis similar, whereas the within numerical precision(b) Commensurate case: the GAM is
behavior ofp, in Fig. 3 is remarkably different, being con- not conserved. Note the change of scale going from péaeto
served only for the case that approximates an incommensianel(b).

0 400 800
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FIG. 4.N=377,7=610/377,\=0.015,P,=0.29.(a) Behavior gj
of the CM momentunP. (b) Behavior ofp,. It is possible to see - 25 | : (&) T
how the GAM stops being conserved) In order to check if there
is a critical timet,, we plot the quantity In§,—Co), whereC, 0 1000 ;e 2000

=py(t=0). We show thatt, can be unambiguously identified.

Note that, even if, in this weak coupling case, the decay of the CM FIG. 5. N=377, 7= 6_10/377,)\=0-05, Po=0.15. The appear-

coincides with the breakdown of conservationmf, this is not ~ ance of Umklapp terms is show@ Phonon amplitudes squared at

always the case. See also text and Fig. 6. t=0. (b) Same at=1000. The mod& =18 (n=47) is starting to
grow; (c) same at=1500. The modes with 47 with n=1,2,3 are

out to be rather intricate, and plan to report on it in the nea@!l present, but there is still no Umklapp terfd) The mode with

future. Here, we want to concentrate on the mechanism thdt=18 has become order unity and the Umklapp term appears, sig-

causes the breakdown of the conservation law, leading to 32!ed by the excited modes at the zone bound@yTime evolu-

well-definedt, . We show in the next section that the answert°" 0f In(ps—Co). The appearance of the Umklapp term in panel
lies in the agpearance of Umklapp terms, which render th e) corresponds to the breakdown of the conservation of the GAM.

- . . ee also text for a detailed explanation of the Umklapp mechanism.
system pinned, thus leading to a nonconservatiop f

bility windows with n(k,q) finite. Since the mapping
n(k,q)—k leads to a uniform distribution, one indeed ex-
As we have pointed out in Sec. b, is conserved only in  pects to find such ak with [n(k,q)|<1A, where w
the absence of the Umklapp terms, that is to say when terms 3w, is the relative width of the joint instabilities win-
of the form given in Eq(9) have a vanishing amplitude for dows. Once the amplitude of the mokistarts growingwith
N—c. As we have seen, this is the case for the ground stata behavior given by an exponential law of the forAe"”,
of the incommensurate system. However, starting from thevith A bounded from below via the upper bound )y also
ground state, this may change during the dynamics due tmodesk’ with n’(k’,q)=pn(k,q)=1,p=2,3, ..., start to
parametric resonances. The movement of the CM with veeevelop via nonlinear terms in the equations of motisee
locity P induces a modulation with frequendy=2=P in Ref. [5] for detaily, with the form
the equations of motion of the system. Linear stability analy-
sis[4,5] shows that a modk grows exponentiallywith rise- Xp=\(Ae/)P, (15
time 7) whenever its frequency satisfies

B. The role of Umklapp processes

The Umklapp terms can result when repeating this process
o 2 e(ma=k) (14 O(N) times (ie., whenpn~N) still gives a finite result.
m From Eq.(15), it is clear that this will happen whexy(t)
exceeds some threshold value, which is the casé ffnger
for somem. The = symbol indicates an instability window than the critical timé,, introduced in Sec. Il A.
of relative widthw,, that scales witt\ ™. Figure 5 shows this mechanism at work: here, we have
Suppose now that a moadg is unstable. Len(k,q) beits  taken P,=0.15, so thatQ)=27P=wy/2, and N=377 (r
label according to Eq(7). Whenn(k,q)=O(N), this mode =610/377). For this value of) Eq. (14) has approximate
could lead to a Umklapp term as soon as its amplitude besolutions forn=2 for k=K(2#/N), with K=18,19. The
comes finite. However, since its initial value is of ordé?, corresponding values fon(k,q) are in the casen(18q)
it requires an infinite amount of tim@s N—=) to render =47 andn(19,q)=97. Panela shows that the phonon am-
Anlet finite. So we have to look for moddsin the insta-  plitudes at=0 decay indeed exponentially with Panel(b)
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In(py-Co) IV. CONCLUSIONS
18 (@) We have shown, in the framework of the undamped one-
dimensional dynamical FK model, that it is possible to ob-
tain analytical results concerning the existence of a new in-
-25 7] tegral of motion that represents a generalized angular
0.20 momentum related to a pha;e invaria}ncg in_ incommensurate
' systems, and we have confirmed this finding by means of
P numerical simulations. We have also shown that, during the
dynamics, a breakdown of the conservation of the GAM oc-
019 ®) curs at a well-defined time, signaling a dynamical transition
: from a floating phase to a locked one. We have been able to

prove that this transition is related to the appearance of Um-
Y 1500 klapp processes, caused by nonlinear couplings of the sys-
tem. We are currently trying to further characterize the na-
ture (ordep of the transition of the dynamical model. We
FIG. 6. N=144, 7=233/144,A =0.05,P;=0.20.(a) Time evo- ~ have furthermore shown that the onset of friction and the
lution of In(p,—Cy). (b)) CM momentumP. Note that the CM mo-  pinning of the system are related but distinct phenomena

mentum has begun its decay before the deviatioppfirom its  occurring in general at different times, which we have been
constant value occurs. able to identify.

Time

shows that the unstable mole= 18 with the lowest value of
n starts to grow at=1000. Modes ah=2Xx47 are also
present, due to nonlinear terms, but quadratically smaller, as We would like to thank Ted Janssen for interesting dis-
explained above. At=1500 modes ah=3X47 become cussions and suggestions.
visible, as shown in pandlc). There is still no Umklapp
term, as can be seen from the absence of an amplitude at the
zone boundary. Such a term, correspondingnte4 <47,
finally appears in pandld), at t=2000. Indeed, this is also We are going to provide in this appendix an explicit deri-
precisely the time at whichx;¢* becomes order unity and vation thatp,=0. Let us consider the first term on the right-
py stops being conservddee panele)]. hand side of Eq(13):
The mechanism described above shows that the appear-
ance of Umklapp terms causes a sudden transition from a .
floating to a pinned structure. In this respect, this transition L=—i>, NOX_ngXng- (A1)
represents a dynamical analogue of the Aubry transition tak- n
ing place in the static model at,. The important difference
is that, for the dynamical case, this transition occurs as #n order to simplify the notation, we will adopt from now on
function of time at all valuea <. the following conventionng= . Take the derivative of Eq.
Before concluding this section, it is important to discuss(Al):
the relation between this “dynamical Aubry” transition de-
scribed above and the onset of friction. The onset of friction
is driven by the coupling of the CM to the mode with the L=—i> kX_ Xo—12 KX_X,. (A2)
modulation wave-vectoq or its harmonics and consists in a « K
special kind of parametric resonances involving more than
Oh”e phcl)non'and where theTtrime-dependent ?ri;]/in%telgns ale can immediately see that, for symmetry reasons, the sec-
e e o an term cancels. Let us now take the equatonoes
very specialzone boundanywave vector. We could say that oflows from the Euler-Lagrange equations:
the last process is more difficult to achieve. In Fig. 6, it can
be seen that the GAM stays conserved, even after the CM ) A (i2m)m
momentum has begun its decay. This means that there is an ~ X«= _wKXK+§ mE—:O mi
interval of time in which the first mechanism is active, - '
whereas the second has not yet taken place. We can identify X[e‘Z’TQxK1~ “ X Oyt by QK
two times: one which characterizes the onset of friction and .
one which describes the pinning of the system. In this re- +(—1)me_'2”QXKl~ . -XKm5Kl+...+Km,q+K],
spect, the dynamical model is much richer than the statical
one. At the Aubry transition, the appearance of a static fric-
tion occurs by definition at the same valuexoat which the
system gets pinned. and the equation for the CM motion:

ACKNOWLEDGMENT

APPENDIX

[

>

K1 ...Km

(A3)
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N (i2m)" >
= — WQ RS
Q 2 mE:l m! Klgkm Le Xy XKm5K1+“'+"mv_q
+(_1)me7i2ﬂ-QXK1' : 'XKm5K1+»--+Km,q]' (A4)
Let us insert Eq(A3) in Eq. (A2). We get
. N (i2m)™
L=—i{=
2 mE:O m! K,Klz.,Km
X[eiZﬂ-QKxfl(XKl' © Xy 6K1+-“+Km,*q+}<+ v ]
(A5)

[Note that the first term in EqA3) cancels for the same
symmetry reasons given abo}&Ve have, for simplicity,

PHYSICAL REVIEW B4 016601

(_ K)XKXK]_. . 'XKm:(_ Kl)XKlXK' o

:(_Km)XKmXK' : .XKm71 (A8)

There are i+ 1) possibilities, thus we can make the substi-
tution
B Kt Kyt + Ky

« m+1

(A9)

Therefore, Eq(A5) becomes

o

. A i2m)™ K+Ki+ -tk
Y L o A O B S-S
2 m=0 m! Ky K1y on e Km m+1
XeiszXKXKl' ' 'XKm5K+Kl+~~~+Km,—q+ o (AlO)

explicitly written down only the first part of the expression in Now  under the assumption that there is no Umklapp
square brackets, since we treat the second part exactly in th1e_..Km:q and can be taken outside the summation.

same way. Rearranging the delta function and applying th
following symmetry transformation

KX_0_,— = KX, Oy, (AB)
Eqg. (A5) becomes
: N (i2m)" >
=—j{= mQ(
L ! 2 mE:O m! K,Klz CKm [e ( K)
XXKXKl'..XKm5K+K1+~'-+Km,*q+ . ] (A7)

Because there is no preferential order in thesummation,
the following equality holds:

®lence, we get

q[r & (i2m)mt?
E Em:0 (m+1)' KK

>

1000

L=

Km

i2
Xe Wkal' : .XKm5K+Kl+~~-+Km,—q+ T

(A11)

The expression in parenthesis is precisely B) for Q
multiplied by g/27. Hence, we find

. . q .
py=L+5-Q=0. (A12)
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