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Breakdown of a conservation law in incommensurate systems

L. Consoli, H. J. F. Knops, and A. Fasolino
Institute for Theoretical Physics, University of Nijmegen, Toernooiveld 1, 6525 ED Nijmegen, The Netherlands

~Received 7 February 2001; published 11 June 2001!

We show that invariance properties of the Lagrangian of an incommensurate system, as described by the
Frenkel-Kontorova model, imply the existence of a generalized angular momentum that is an integral of
motion if the system remains floating. The behavior of this quantity can therefore monitor the character of the
system as floating~when it is conserved! or locked~when it is not!. We find that, during the dynamics, the
nonlinear couplings of our model cause parametric phonon excitations that lead to the appearance of Umklapp
terms and to a sudden deviation of the generalized momentum from a constant value, signaling a dynamical
transition from a floating to a pinned state. We point out that this transition is related but does not coincide with
the onset of sliding friction, which can take place when the system is still floating.

DOI: 10.1103/PhysRevE.64.016601 PACS number~s!: 45.05.1x, 05.45.2a, 45.10.2b, 81.40.Pq
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I. INTRODUCTION

Measuring friction at an atomic level has recently beco
experimentally possible@1#. Many studies of the dynamics o
appropriate nonlinear systems aiming at establishing
mechanisms giving rise to energy dissipation during the s
ing of a body onto a crystalline surface have appeared in
literature@2–5#. The Frenkel-Kontorova~FK! model, which
describes a harmonic chain interacting with a rigid perio
substrate, is particularly suitable to study the important c
of an incommensurate~IC! lattice parameter ratio of the con
tacting surfaces. The present study focuses on the effec
discommensuration on the dynamics. It should be kep
mind that a more realistic study of friction would require
extension to two dimensions. Coupling to the third dime
sion can be provided either by anad hocdamping term or by
coupling to an elastic medium@6#. The ground-state proper
ties of this model have been thoroughly studied@7#. At a
critical valuelc of the coupling to the external potential, th
ground state of the system displays a structural transi
~Aubry transition! from a floating to a pinned configuration
Below this threshold, the center of mass of the static sys
can be displaced on the substrate without energy co
Therefore, one might expect a frictionless regime also i
dynamic situation, and asuperlubricregime, where the chain
would slide indefinitely, has been predicted for this case@2#.
In a previous paper@5#, we have pointed out that the inhere
nonlinear coupling of the center of mass~CM! motion to the
phonons leads instead to an irreversible decay of the
velocity. The essential mechanism for the transfer of kine
energy from the center of mass to the internal vibrations
the parametric resonant excitation of phonons mediated
ordinary resonances with phonons related to the modula
potential.

Here we show that this type of mechanism has ano
important consequence, namely, it causes the appearan
Umklapp terms, signalling a dynamical transition in the s
tem from a floating to a pinned state. We have studied
phenomenon by identifying a new quantity, which we c
generalized angular momentum~GAM!, which is an integral
of motion only if the system is in a floating IC phase, refle
ing the invariance of the Lagrangian of the model for a ph
1063-651X/2001/64~1!/016601~6!/$20.00 64 0166
e

e
-
e

c
e

of
in

-

n

m
ts.
a

M
c
is
y
g

er
of

-
is
l

-
e

shift in this state. We show that this invariance is equival
to the absence of Umklapp terms. By means of numer
simulations we show that the temporal behavior of the GA
is a powerful probe both of the~in!commensurability of the
ground-state configuration and of the dynamical phase
which the system is during motion. Simulations where t
incommensurate ground state is given an initial veloc
show that the GAM remains conserved up to a well-defin
time where a sudden jump takes place. We have been ab
relate this change of behavior from conserved to non c
served to the appearance of Umklapp terms. An import
finding is that this floating-pinned transition does not co
cide with the onset of friction. It was recently suggested
Popov @8# that the appearance of Umklapp terms, i.e.,
conservation of quasimomentum instead of momentum
crystalline systems, is the mechanism via that friction occ
in incommensurate contacts. The present result shows
this is not the only mechanism. By monitoring the system
the GAM we can show that decay of the CM velocity m
occur already in the floating phase. The onset of friction a
the appearance of Umklapp terms are both caused by no
ear couplings and resonant phonon excitations in the sys
but remain two distinct phenomena occurring at differe
times.

In Sec. II, we describe the construction of the GAM b
deriving it from the Lagrangian for the system in Fouri
space and define conditions under which it is conserved
Sec. III A, we present results of numerical simulations th
confirm the validity of our analytical derivation and unde
line the usefulness of the GAM to discriminate betwe
commensurate and floating-IC and pinned-IC phases, res
tively. Subsequently, we examine, in Sec. III B, the relatio
ship between pinning and Umklapp terms and show the p
ence of a well-defined transition time. In Sec. IV, we pres
conclusions and perspectives of this work. In the Append
we provide the reader with an explicit proof that the GAM
an integral of motion in the absence of Umklapp terms.

II. CONSTRUCTION OF A GENERALIZED
ANGULAR MOMENTUM

In this section we will construct a generalized angu
momentum for the dynamical FK model, as described in R
©2001 The American Physical Society01-1
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@5#. We remind the reader that this model represents a c
of N particles that interact with each other via a firs
neighbor harmonic potential and are subjected to an exte
spatially periodic, potential of strengthl. The FK Hamil-
tonian reads

H5 (
n51

N Fpn
2

2
1

1

2
~un112un2 l !21

l

2p
sinS 2pun

m D G ,
~1!

where theun are the particle positions andpn their momenta.
The ratio between the modulation period of the external
tential m and l ~the equilibrium distance between the atom
of the chain forl50) is taken to be irrational, i.e., the sy
tem is incommensurate. In our calculations, we takem51
andl 5t5(A511)/2 ~golden mean!. In the numerical imple-
mentation for a finite system ofN particles, we impose peri
odic boundary conditions

uN115Nl1u1 . ~2!

This implies that we have to choose commensurate
proximants for the equilibrium distancel. By expressingl as
the ratio of consecutive Fibonacci numbers, we obtain
proximants that satisfy the conditionlN5M31 with M and
N integers. Let us introduce the modulation wave-vectoq
52p l 52p(M /N) and the position and momentum of th
CM of the chain of atoms:

Q5
1

N (
n

un , P5
1

N (
n

pn . ~3!

The equations of motion for the deviationsxn5un2nl2Q
from the equilibrium positions in the uncoupled chain a
then given by

ẍn5xn111xn2122xn1l cos~qn12pxn12pQ!. ~4!

As noted in Ref.@5#, in the weak-coupling regime, it is use
ful to move to Fourier coordinatesxk5(1/N)(ne2 iknxn with
k52pK/N. The phonon dispersion of the chain forl50 is
denoted byvk[v(k)52usin(k/2)u. The Lagrangian associ
ated with Eq.~1! in transformed space becomes

L5NF(
k

S 1

2
ẋkẋ2k2

1

2
vk

2xkx2kD
1

l

2p

1

2i (
m51

`
~ i2p!m

~m! ! (
k1 . . . km

3~ei2pQxk1
•••xkm

dk11•••1km ,2q

2~21!me2 i2pQxk1
•••xkm

dk11•••1km ,q!1
1

2
~Q̇!2G .

~5!

It is important to notice that since wave vectors are defin
modulo 2p, the Kronecker deltas in Eq.~5! should be read
as
01660
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k11k21•••1km5q1s32p. ~6!

The Umklapp terms are present whenever this relation
satisfied withsÞ0. It is clear that the occurrence of Um
klapp depends on the modesxk that are not negligible, and
on the choice of the~extended or reduced! Brillouin zone in
which k is represented. It is known that in the ground-sta
for a couplingl well below the critical valuelc , which for
this model assumes the valuelc50.154, . . . , the modes
with wave-vectornq have an amplitude that scales asl unu.
This numberunu is therefore a natural label to represent t
modes; we definen(k,q) as the smallest~in absolute value!
number, which satisfies

k5n~k,q!q mod~2p! ~7!

For a finite system withN particles, wherek can be repre-
sented in the reduced Brillouin zone ask5K(2p/N), K
P(21/2N,1/2N#, this can be rewritten as

K5nM mod~N!,nP~21/2N,1/2N#. ~8!

In Fig. 1, we compare the phonon amplitudes for the grou
state of the FK model forN5377, l50.05, plotted as a
function of the usual wave-vector labelK @panel~a!#, as well
as reordered according to the labeln @panel~b!#. Note that,
due to finite numerical precision, the scaling behavior is h
den in numerical noise after the first fifteen modes.

The use ofn as a mode label makes apparent the fact t
there is no Umklapp term in the ground state of the F
model in the modulated phase forl,lc . In fact, an Um-
klapp term would imply the presence of a nonvanishi
term:

FIG. 1. FK model forN5377, l50.05.~a! Phonon amplitudes
squared plotted as a function of the wave vectorK, as in Eq.~8!.
The first two nq modes are explicitly indicated.~b! Same as in
panel ~a!, relabeled according to Eq.~7!. Due to finite numerical
precision, the exponential decay withl unu is apparent only for the
first 15 modes.
1-2
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BREAKDOWN OF A CONSERVATION LAW IN . . . PHYSICAL REVIEW E64 016601
xn1qxn2q•••xnmq ; n11n21•••nm5sN with sÞ0. ~9!

The joint amplitude of this term would be

l un1u1•••unmu<l usuN, ~10!

which vanishes forN→`.
The absence of Umklapp terms is directly related to

existence of a free-floating phase, which is a well-kno
invariance property of the FK model. In the present notati
it amounts to the invariance of the Lagrangian for the tra
formation

Q→Q1qf/2p, ~11!

xk→xke
ikf. ~12!

This invariance is related to the existence of a ze
frequency Goldstone mode in the system. This mode is
often called phason, and should not be confused with
usual acoustic mode of periodic crystals.

Having found an invariance for the Lagrangian, we c
look for the conjugate conserved momentum. We get

pf5
]L
]ḟ

52 i(
n

nqx2nqẋnq1
q

2p
Q̇[L1

q

2p
Q̇. ~13!

The quantitypf represents a generalized angular moment
~GAM!. It is important to realize that the invariance of th
Lagrangian only holds in a subspace of the full phase sp
where Umklapp terms can be neglected as it is the case
the floating~incommensurate! ground state. In order to stres
this point, a direct calculation ofṗf is given in the Appen-
dix, showing that the GAMpf is an integral of motion only
if the Umklapp terms are not present.

This quantity is therefore a useful tool to discrimina
between commensurate and incommensurate structures
floating and locked states. In the next section we pres
numerical simulations that we carried out for various valu
of the parameters of the model, showing howpf is a good
indicator of the phase in which the system is under exa
nation.

III. NUMERICAL RESULTS

A. Commensurate vs incommensurate, locked vs floating

We have performed numerical simulations in order
study the behavior of the GAM, as defined by Eq.~13!, in-
tegrating by a Runge-Kutta algorithm theN Eqs. ~4!. We
assign to the particles of the chain as initial conditions m
mentapn5P0 and positionsxn(t50) corresponding to the
ground state. Figure 2 shows simulation results for the sa
number of particlesN and potential strengthl, but for a low
(t55/3) and a high (t5233/144) approximant to the golde
meant, producing a commensurate structure and an appr
mate incommensurate one. The qualitative behavior of
momentum of the center-of-massP is similar, whereas the
behavior ofpf in Fig. 3 is remarkably different, being con
served only for the case that approximates an incomme
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rate system. This confirms thatpf can be used as a tool t
discriminate unambiguously between commensurate and
commensurate structures.

Furthermore, our numerical simulations show a rema
able fact. If we start the simulation with an incommensur
initial condition, pf is indeed conserved, but only up to
critical time tc , after which, it rapidly deviates from its ini
tial conserved value. This is shown in Fig. 4, where we c
examine the behavior ofpf andP in a weak-coupling, highly
incommensurate (t5610/377,l50.015) case. In order to
check that the observed variation ofpf only sets in after a
critical time tc , we have analyzed the behavior of the qua
tity ln(pf2C0), C0 being the value ofpf at t50. It is evi-
dent from panel~c! of Fig. 4 that we can identify such a
critical time tc where the GAM has a jump in value of var
ous order of magnitude. Besides, this figure shows that,
t,tc , pf is conserved within our numerical accuracy, nev
exceeding variation larger than 10220.

The critical time tc obviously depends on the couplin
strengthl,lc and on the initial velocityP0. We are cur-
rently investigating the dependencetc(l,P0), which turns

FIG. 2. Behavior of the CM momentumP for ~a! an incommen-
surate configuration with N5144, t5233/144, l50.015,
P050.29; ~b! a commensurate case withN5144, t55/3, l
50.015, P050.29. Note the qualitative similarity in the behavio
of P.

FIG. 3. Behavior ofpf for the parameters of the model as d
scribed in Fig. 2.~a! Incommensurate case: the GAM is consta
within numerical precision.~b! Commensurate case: the GAM
not conserved. Note the change of scale going from panel~a! to
panel~b!.
1-3
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out to be rather intricate, and plan to report on it in the n
future. Here, we want to concentrate on the mechanism
causes the breakdown of the conservation law, leading
well-definedtc . We show in the next section that the answ
lies in the appearance of Umklapp terms, which render
system pinned, thus leading to a nonconservation ofpf .

B. The role of Umklapp processes

As we have pointed out in Sec. II,pf is conserved only in
the absence of the Umklapp terms, that is to say when te
of the form given in Eq.~9! have a vanishing amplitude fo
N→`. As we have seen, this is the case for the ground s
of the incommensurate system. However, starting from
ground state, this may change during the dynamics du
parametric resonances. The movement of the CM with
locity P induces a modulation with frequencyV52pP in
the equations of motion of the system. Linear stability ana
sis @4,5# shows that a modek grows exponentially~with rise-
time t) whenever its frequency satisfies

V.
v~k!1v~mq2k!

m
~14!

for somem. The . symbol indicates an instability window
of relative widthwm that scales withl umu.

Suppose now that a modexk is unstable. Letn(k,q) be its
label according to Eq.~7!. Whenn(k,q)5O(N), this mode
could lead to a Umklapp term as soon as its amplitude
comes finite. However, since its initial value is of orderl unu,
it requires an infinite amount of time~as N→`) to render
l unuet/t finite. So we have to look for modesk in the insta-

FIG. 4. N5377, t5610/377,l50.015,P050.29.~a! Behavior
of the CM momentumP. ~b! Behavior ofpf . It is possible to see
how the GAM stops being conserved.~c! In order to check if there
is a critical timetc , we plot the quantity ln(pf2C0), whereC0

5pf(t50). We show thattc can be unambiguously identified
Note that, even if, in this weak coupling case, the decay of the
coincides with the breakdown of conservation ofpf , this is not
always the case. See also text and Fig. 6.
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bility windows with n(k,q) finite. Since the mapping
n(k,q)→k leads to a uniform distribution, one indeed e
pects to find such ak with un(k,q)u,1/w, where w
5(mwm is the relative width of the joint instabilities win
dows. Once the amplitude of the modek starts growing~with
a behavior given by an exponential law of the form:Aet/t,
with A bounded from below via the upper bound onn), also
modesk8 with n8(k8,q)5pn(k,q)61,p52,3, . . . , start to
develop via nonlinear terms in the equations of motion~see
Ref. @5# for details!, with the form

xk8.l~Aet/t!p. ~15!

The Umklapp terms can result when repeating this proc
O(N) times ~i.e., whenpn;N) still gives a finite result.
From Eq.~15!, it is clear that this will happen whenxk(t)
exceeds some threshold value, which is the case fort larger
than the critical timetc introduced in Sec. III A.

Figure 5 shows this mechanism at work: here, we ha
taken P050.15, so thatV52pP5vq/2, and N5377 (t
5610/377). For this value ofV Eq. ~14! has approximate
solutions for n52 for k5K(2p/N), with K518,19. The
corresponding values forn(k,q) are in the casen(18,q)
547 andn(19,q)597. Panel~a! shows that the phonon am
plitudes att50 decay indeed exponentially withn. Panel~b!

FIG. 5. N5377, t5610/377,l50.05, P050.15. The appear-
ance of Umklapp terms is shown.~a! Phonon amplitudes squared
t50. ~b! Same att51000. The modeK518 (n547) is starting to
grow; ~c! same att51500. The modes with 47n, with n51,2,3 are
all present, but there is still no Umklapp term.~d! The mode with
K518 has become order unity and the Umklapp term appears,
naled by the excited modes at the zone boundary.~e! Time evolu-
tion of ln(pf2C0). The appearance of the Umklapp term in pan
~e! corresponds to the breakdown of the conservation of the GA
See also text for a detailed explanation of the Umklapp mechan
1-4
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BREAKDOWN OF A CONSERVATION LAW IN . . . PHYSICAL REVIEW E64 016601
shows that the unstable modeK518 with the lowest value of
n starts to grow att51000. Modes atn52347 are also
present, due to nonlinear terms, but quadratically smaller
explained above. Att51500 modes atn53347 become
visible, as shown in panel~c!. There is still no Umklapp
term, as can be seen from the absence of an amplitude a
zone boundary. Such a term, corresponding ton54347,
finally appears in panel~d!, at t52000. Indeed, this is also
precisely the time at whichux18u2 becomes order unity an
pf stops being conserved@see panel~e!#.

The mechanism described above shows that the app
ance of Umklapp terms causes a sudden transition fro
floating to a pinned structure. In this respect, this transit
represents a dynamical analogue of the Aubry transition
ing place in the static model atlc . The important difference
is that, for the dynamical case, this transition occurs a
function of time at all valuesl,lc .

Before concluding this section, it is important to discu
the relation between this ‘‘dynamical Aubry’’ transition de
scribed above and the onset of friction. The onset of frict
is driven by the coupling of the CM to the mode with th
modulation wave-vectorq or its harmonics and consists in
special kind of parametric resonances involving more th
one phonon and where the time-dependent driving terms
themselves in resonance@5#. The appearance of the Umklap
terms requires instead a phonon with finite amplitude an
very special~zone boundary! wave vector. We could say tha
the last process is more difficult to achieve. In Fig. 6, it c
be seen that the GAM stays conserved, even after the
momentum has begun its decay. This means that there
interval of time in which the first mechanism is activ
whereas the second has not yet taken place. We can ide
two times: one which characterizes the onset of friction a
one which describes the pinning of the system. In this
spect, the dynamical model is much richer than the stat
one. At the Aubry transition, the appearance of a static f
tion occurs by definition at the same value ofl at which the
system gets pinned.

FIG. 6. N5144, t5233/144,l50.05, P050.20.~a! Time evo-
lution of ln(pf2C0). ~b! CM momentumP. Note that the CM mo-
mentum has begun its decay before the deviation ofpf from its
constant value occurs.
01660
as

the

ar-
a

n
k-

a

s

n

n
re

a

n
M
an

tify
d
-

al
-

IV. CONCLUSIONS

We have shown, in the framework of the undamped o
dimensional dynamical FK model, that it is possible to o
tain analytical results concerning the existence of a new
tegral of motion that represents a generalized ang
momentum related to a phase invariance in incommensu
systems, and we have confirmed this finding by means
numerical simulations. We have also shown that, during
dynamics, a breakdown of the conservation of the GAM o
curs at a well-defined time, signaling a dynamical transit
from a floating phase to a locked one. We have been abl
prove that this transition is related to the appearance of U
klapp processes, caused by nonlinear couplings of the
tem. We are currently trying to further characterize the n
ture ~order! of the transition of the dynamical model. W
have furthermore shown that the onset of friction and
pinning of the system are related but distinct phenom
occurring in general at different times, which we have be
able to identify.
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APPENDIX

We are going to provide in this appendix an explicit de
vation thatṗf50. Let us consider the first term on the righ
hand side of Eq.~13!:

L52 i(
n

nqx2nqẋnq . ~A1!

In order to simplify the notation, we will adopt from now o
the following convention:nq[k. Take the derivative of Eq
~A1!:

L̇52 i(
k

kx2kẍk2 i(
k

k ẋ2kẋk . ~A2!

We can immediately see that, for symmetry reasons, the
ond term cancels. Let us now take the equation forẍk as
follows from the Euler-Lagrange equations:

ẍk52vk
2xk1

l

2 (
m50

`
~ i2p!m

m! (
k1 . . . km

3@ei2pQxk1
•••xkm

dk11•••1km ,2q1k

1~21!me2 i2pQxk1
•••xkm

dk11•••1km ,q1k#,

~A3!

and the equation for the CM motion:
1-5
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Q̈5
l

2 (
m51

`
~ i2p!m

m! (
k1 . . . km

@ei2pQxk1
•••xkm

dk11•••1km ,2q

1~21!me2 i2pQxk1
•••xkm

dk11•••1km ,q#. ~A4!

Let us insert Eq.~A3! in Eq. ~A2!. We get

L̇52 i H l

2 (
m50

`
~ i2p!m

m! (
k,k1 , . . . ,km

3@ei2pQkx2kxk1
•••xkm

dk11•••1km ,2q1k1 . . . #J .

~A5!

@Note that the first term in Eq.~A3! cancels for the same
symmetry reasons given above.# We have, for simplicity,
explicitly written down only the first part of the expression
square brackets, since we treat the second part exactly in
same way. Rearranging the delta function and applying
following symmetry transformation

kx2kd2k→2kxkdk , ~A6!

Eq. ~A5! becomes

L̇52 i H l

2 (
m50

`
~ i2p!m

m! (
k,k1 , . . . ,km

@ei2pQ~2k!

3xkxk1
•••xkm

dk1k11•••1km ,2q1 . . . #J . ~A7!

Because there is no preferential order in thek summation,
the following equality holds:
g

.

01660
the
e

~2k!xkxk1
•••xkm

5~2k1!xk1
xk•••xkm

5•••

5~2km!xkm
xk•••xkm21

. ~A8!

There are (m11) possibilities, thus we can make the subs
tution

k5
k1k11•••1km

m11
. ~A9!

Therefore, Eq.~A5! becomes

L̇52 i H l

2 (
m50

`
~ i2p!m

m! (
k,k1 , . . . ,km

F S 2
k1k11•••1km

m11 D
3ei2pQxkxk1

•••xkm
dk1k11•••1km ,2q1•••G J . ~A10!

Now, under the assumption that there is no Umklappk1
1•••km5q and can be taken outside the summatio
Hence, we get

L̇52
q

2p H l

2 (
m50

`
~ i2p!m11

~m11!! (
k,k1 ,•••,km

3ei2pQxk1
•••xkm

dk1k11•••1km ,2q1•••J .

~A11!

The expression in parenthesis is precisely Eq.~A4! for Q̈
multiplied by q/2p. Hence, we find

ṗf5L̇1
q

2p
Q̈50. ~A12!
rob-
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